Metamath Proof Explorer


Theorem elfzom1p1elfzo

Description: Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018) (Proof shortened by Thierry Arnoux, 14-Dec-2023)

Ref Expression
Assertion elfzom1p1elfzo N X 0 ..^ N 1 X + 1 0 ..^ N

Proof

Step Hyp Ref Expression
1 nnz N N
2 elfzom1elp1fzo N X 0 ..^ N 1 X + 1 0 ..^ N
3 1 2 sylan N X 0 ..^ N 1 X + 1 0 ..^ N