Metamath Proof Explorer


Theorem elfzomelpfzo

Description: An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018)

Ref Expression
Assertion elfzomelpfzo M N K L K M L ..^ N L K + L M ..^ N

Proof

Step Hyp Ref Expression
1 zsubcl M L M L
2 1 ad2ant2rl M N K L M L
3 simpl M N M
4 3 adantr M N K L M
5 2 4 2thd M N K L M L M
6 simpl K L K
7 6 adantl M N K L K
8 zaddcl K L K + L
9 8 adantl M N K L K + L
10 7 9 2thd M N K L K K + L
11 zre M M
12 11 adantr M N M
13 12 adantr M N K L M
14 zre L L
15 14 adantl K L L
16 15 adantl M N K L L
17 zre K K
18 17 adantr K L K
19 18 adantl M N K L K
20 13 16 19 lesubaddd M N K L M L K M K + L
21 5 10 20 3anbi123d M N K L M L K M L K M K + L M K + L
22 eluz2 K M L M L K M L K
23 eluz2 K + L M M K + L M K + L
24 21 22 23 3bitr4g M N K L K M L K + L M
25 zsubcl N L N L
26 25 ad2ant2l M N K L N L
27 simplr M N K L N
28 26 27 2thd M N K L N L N
29 zre N N
30 29 adantl M N N
31 30 adantr M N K L N
32 19 16 31 ltaddsubd M N K L K + L < N K < N L
33 32 bicomd M N K L K < N L K + L < N
34 24 28 33 3anbi123d M N K L K M L N L K < N L K + L M N K + L < N
35 elfzo2 K M L ..^ N L K M L N L K < N L
36 elfzo2 K + L M ..^ N K + L M N K + L < N
37 34 35 36 3bitr4g M N K L K M L ..^ N L K + L M ..^ N