Metamath Proof Explorer


Theorem elfzomin

Description: Membership of an integer in the smallest open range of integers. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion elfzomin Z Z Z ..^ Z + 1

Proof

Step Hyp Ref Expression
1 snidg Z Z Z
2 fzosn Z Z ..^ Z + 1 = Z
3 1 2 eleqtrrd Z Z Z ..^ Z + 1