Metamath Proof Explorer


Theorem elfzonelfzo

Description: If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018)

Ref Expression
Assertion elfzonelfzo N K M ..^ R ¬ K M ..^ N K N ..^ R

Proof

Step Hyp Ref Expression
1 elfzo2 K M ..^ R K M R K < R
2 simpr K M R K < R ¬ K M ..^ N N N
3 eluzelz K M K
4 3 3ad2ant1 K M R K < R K
5 4 ad2antrr K M R K < R ¬ K M ..^ N N K
6 eluzelre K M K
7 zre N N
8 ltnle K N K < N ¬ N K
9 6 7 8 syl2an K M N K < N ¬ N K
10 id K M N K < N K M N K < N
11 10 3expa K M N K < N K M N K < N
12 elfzo2 K M ..^ N K M N K < N
13 11 12 sylibr K M N K < N K M ..^ N
14 13 ex K M N K < N K M ..^ N
15 9 14 sylbird K M N ¬ N K K M ..^ N
16 15 con1d K M N ¬ K M ..^ N N K
17 16 ex K M N ¬ K M ..^ N N K
18 17 com23 K M ¬ K M ..^ N N N K
19 18 3ad2ant1 K M R K < R ¬ K M ..^ N N N K
20 19 imp31 K M R K < R ¬ K M ..^ N N N K
21 eluz2 K N N K N K
22 2 5 20 21 syl3anbrc K M R K < R ¬ K M ..^ N N K N
23 simpll2 K M R K < R ¬ K M ..^ N N R
24 simpll3 K M R K < R ¬ K M ..^ N N K < R
25 elfzo2 K N ..^ R K N R K < R
26 22 23 24 25 syl3anbrc K M R K < R ¬ K M ..^ N N K N ..^ R
27 26 ex K M R K < R ¬ K M ..^ N N K N ..^ R
28 1 27 sylanb K M ..^ R ¬ K M ..^ N N K N ..^ R
29 28 com12 N K M ..^ R ¬ K M ..^ N K N ..^ R