Metamath Proof Explorer


Theorem elfzop1le2

Description: A member in a half-open integer interval plus 1 is less than or equal to the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elfzop1le2 K M ..^ N K + 1 N

Proof

Step Hyp Ref Expression
1 elfzolt2 K M ..^ N K < N
2 elfzoelz K M ..^ N K
3 elfzoel2 K M ..^ N N
4 zltp1le K N K < N K + 1 N
5 2 3 4 syl2anc K M ..^ N K < N K + 1 N
6 1 5 mpbid K M ..^ N K + 1 N