Metamath Proof Explorer


Theorem elfzouz2

Description: The upper bound of a half-open range is greater than or equal to an element of the range. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion elfzouz2 K M ..^ N N K

Proof

Step Hyp Ref Expression
1 elfzoelz K M ..^ N K
2 elfzoel2 K M ..^ N N
3 elfzolt2 K M ..^ N K < N
4 zre K K
5 zre N N
6 ltle K N K < N K N
7 4 5 6 syl2an K N K < N K N
8 1 2 7 syl2anc K M ..^ N K < N K N
9 3 8 mpd K M ..^ N K N
10 eluz2 N K K N K N
11 1 2 9 10 syl3anbrc K M ..^ N N K