Metamath Proof Explorer


Theorem elfzp1

Description: Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005) (Proof shortened by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elfzp1 N M K M N + 1 K M N K = N + 1

Proof

Step Hyp Ref Expression
1 fzsuc N M M N + 1 = M N N + 1
2 1 eleq2d N M K M N + 1 K M N N + 1
3 elun K M N N + 1 K M N K N + 1
4 ovex N + 1 V
5 4 elsn2 K N + 1 K = N + 1
6 5 orbi2i K M N K N + 1 K M N K = N + 1
7 3 6 bitri K M N N + 1 K M N K = N + 1
8 2 7 bitrdi N M K M N + 1 K M N K = N + 1