Metamath Proof Explorer


Theorem elfzp12

Description: Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010)

Ref Expression
Assertion elfzp12 N M K M N K = M K M + 1 N

Proof

Step Hyp Ref Expression
1 elex K M N K V
2 1 anim2i N M K M N N M K V
3 elfvex N M M V
4 eleq1 K = M K V M V
5 3 4 syl5ibrcom N M K = M K V
6 5 imdistani N M K = M N M K V
7 elex K M + 1 N K V
8 7 anim2i N M K M + 1 N N M K V
9 6 8 jaodan N M K = M K M + 1 N N M K V
10 fzpred N M M N = M M + 1 N
11 10 eleq2d N M K M N K M M + 1 N
12 elun K M M + 1 N K M K M + 1 N
13 11 12 bitrdi N M K M N K M K M + 1 N
14 elsng K V K M K = M
15 14 orbi1d K V K M K M + 1 N K = M K M + 1 N
16 13 15 sylan9bb N M K V K M N K = M K M + 1 N
17 2 9 16 pm5.21nd N M K M N K = M K M + 1 N