Metamath Proof Explorer


Theorem elfzp1b

Description: An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion elfzp1b K N K 0 N 1 K + 1 1 N

Proof

Step Hyp Ref Expression
1 peano2z K K + 1
2 1z 1
3 fzsubel 1 N K + 1 1 K + 1 1 N K + 1 - 1 1 1 N 1
4 2 3 mpanl1 N K + 1 1 K + 1 1 N K + 1 - 1 1 1 N 1
5 2 4 mpanr2 N K + 1 K + 1 1 N K + 1 - 1 1 1 N 1
6 1 5 sylan2 N K K + 1 1 N K + 1 - 1 1 1 N 1
7 6 ancoms K N K + 1 1 N K + 1 - 1 1 1 N 1
8 zcn K K
9 ax-1cn 1
10 pncan K 1 K + 1 - 1 = K
11 8 9 10 sylancl K K + 1 - 1 = K
12 1m1e0 1 1 = 0
13 12 oveq1i 1 1 N 1 = 0 N 1
14 13 a1i K 1 1 N 1 = 0 N 1
15 11 14 eleq12d K K + 1 - 1 1 1 N 1 K 0 N 1
16 15 adantr K N K + 1 - 1 1 1 N 1 K 0 N 1
17 7 16 bitr2d K N K 0 N 1 K + 1 1 N