Metamath Proof Explorer


Theorem elfzr

Description: A member of a finite interval of integers is either a member of the corresponding half-open integer range or the upper bound of the interval. (Contributed by AV, 5-Feb-2021)

Ref Expression
Assertion elfzr K M N K M ..^ N K = N

Proof

Step Hyp Ref Expression
1 elfzuz2 K M N N M
2 fzisfzounsn N M M N = M ..^ N N
3 2 eleq2d N M K M N K M ..^ N N
4 elun K M ..^ N N K M ..^ N K N
5 elsni K N K = N
6 5 orim2i K M ..^ N K N K M ..^ N K = N
7 4 6 sylbi K M ..^ N N K M ..^ N K = N
8 3 7 syl6bi N M K M N K M ..^ N K = N
9 1 8 mpcom K M N K M ..^ N K = N