Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
The Generalized Continuum Hypothesis
Sets satisfying the Generalized Continuum Hypothesis
elgch
Next ⟩
fingch
Metamath Proof Explorer
Ascii
Unicode
Theorem
elgch
Description:
Elementhood in the collection of GCH-sets.
(Contributed by
Mario Carneiro
, 15-May-2015)
Ref
Expression
Assertion
elgch
⊢
A
∈
V
→
A
∈
GCH
↔
A
∈
Fin
∨
∀
x
¬
A
≺
x
∧
x
≺
𝒫
A
Proof
Step
Hyp
Ref
Expression
1
df-gch
⊢
GCH
=
Fin
∪
y
|
∀
x
¬
y
≺
x
∧
x
≺
𝒫
y
2
1
eleq2i
⊢
A
∈
GCH
↔
A
∈
Fin
∪
y
|
∀
x
¬
y
≺
x
∧
x
≺
𝒫
y
3
elun
⊢
A
∈
Fin
∪
y
|
∀
x
¬
y
≺
x
∧
x
≺
𝒫
y
↔
A
∈
Fin
∨
A
∈
y
|
∀
x
¬
y
≺
x
∧
x
≺
𝒫
y
4
2
3
bitri
⊢
A
∈
GCH
↔
A
∈
Fin
∨
A
∈
y
|
∀
x
¬
y
≺
x
∧
x
≺
𝒫
y
5
breq1
⊢
y
=
A
→
y
≺
x
↔
A
≺
x
6
pweq
⊢
y
=
A
→
𝒫
y
=
𝒫
A
7
6
breq2d
⊢
y
=
A
→
x
≺
𝒫
y
↔
x
≺
𝒫
A
8
5
7
anbi12d
⊢
y
=
A
→
y
≺
x
∧
x
≺
𝒫
y
↔
A
≺
x
∧
x
≺
𝒫
A
9
8
notbid
⊢
y
=
A
→
¬
y
≺
x
∧
x
≺
𝒫
y
↔
¬
A
≺
x
∧
x
≺
𝒫
A
10
9
albidv
⊢
y
=
A
→
∀
x
¬
y
≺
x
∧
x
≺
𝒫
y
↔
∀
x
¬
A
≺
x
∧
x
≺
𝒫
A
11
10
elabg
⊢
A
∈
V
→
A
∈
y
|
∀
x
¬
y
≺
x
∧
x
≺
𝒫
y
↔
∀
x
¬
A
≺
x
∧
x
≺
𝒫
A
12
11
orbi2d
⊢
A
∈
V
→
A
∈
Fin
∨
A
∈
y
|
∀
x
¬
y
≺
x
∧
x
≺
𝒫
y
↔
A
∈
Fin
∨
∀
x
¬
A
≺
x
∧
x
≺
𝒫
A
13
4
12
syl5bb
⊢
A
∈
V
→
A
∈
GCH
↔
A
∈
Fin
∨
∀
x
¬
A
≺
x
∧
x
≺
𝒫
A