Metamath Proof Explorer


Theorem elgrug

Description: Properties of a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion elgrug U V U Univ Tr U x U 𝒫 x U y U x y U y U x ran y U

Proof

Step Hyp Ref Expression
1 treq u = U Tr u Tr U
2 eleq2 u = U 𝒫 x u 𝒫 x U
3 eleq2 u = U x y u x y U
4 3 raleqbi1dv u = U y u x y u y U x y U
5 oveq1 u = U u x = U x
6 eleq2 u = U ran y u ran y U
7 5 6 raleqbidv u = U y u x ran y u y U x ran y U
8 2 4 7 3anbi123d u = U 𝒫 x u y u x y u y u x ran y u 𝒫 x U y U x y U y U x ran y U
9 8 raleqbi1dv u = U x u 𝒫 x u y u x y u y u x ran y u x U 𝒫 x U y U x y U y U x ran y U
10 1 9 anbi12d u = U Tr u x u 𝒫 x u y u x y u y u x ran y u Tr U x U 𝒫 x U y U x y U y U x ran y U
11 df-gru Univ = u | Tr u x u 𝒫 x u y u x y u y u x ran y u
12 10 11 elab2g U V U Univ Tr U x U 𝒫 x U y U x y U y U x ran y U