Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Grothendieck universes
elgrug
Next ⟩
grutr
Metamath Proof Explorer
Ascii
Unicode
Theorem
elgrug
Description:
Properties of a Grothendieck universe.
(Contributed by
Mario Carneiro
, 9-Jun-2013)
Ref
Expression
Assertion
elgrug
⊢
U
∈
V
→
U
∈
Univ
↔
Tr
⁡
U
∧
∀
x
∈
U
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
∧
∀
y
∈
U
x
⋃
ran
⁡
y
∈
U
Proof
Step
Hyp
Ref
Expression
1
treq
⊢
u
=
U
→
Tr
⁡
u
↔
Tr
⁡
U
2
eleq2
⊢
u
=
U
→
𝒫
x
∈
u
↔
𝒫
x
∈
U
3
eleq2
⊢
u
=
U
→
x
y
∈
u
↔
x
y
∈
U
4
3
raleqbi1dv
⊢
u
=
U
→
∀
y
∈
u
x
y
∈
u
↔
∀
y
∈
U
x
y
∈
U
5
oveq1
⊢
u
=
U
→
u
x
=
U
x
6
eleq2
⊢
u
=
U
→
⋃
ran
⁡
y
∈
u
↔
⋃
ran
⁡
y
∈
U
7
5
6
raleqbidv
⊢
u
=
U
→
∀
y
∈
u
x
⋃
ran
⁡
y
∈
u
↔
∀
y
∈
U
x
⋃
ran
⁡
y
∈
U
8
2
4
7
3anbi123d
⊢
u
=
U
→
𝒫
x
∈
u
∧
∀
y
∈
u
x
y
∈
u
∧
∀
y
∈
u
x
⋃
ran
⁡
y
∈
u
↔
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
∧
∀
y
∈
U
x
⋃
ran
⁡
y
∈
U
9
8
raleqbi1dv
⊢
u
=
U
→
∀
x
∈
u
𝒫
x
∈
u
∧
∀
y
∈
u
x
y
∈
u
∧
∀
y
∈
u
x
⋃
ran
⁡
y
∈
u
↔
∀
x
∈
U
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
∧
∀
y
∈
U
x
⋃
ran
⁡
y
∈
U
10
1
9
anbi12d
⊢
u
=
U
→
Tr
⁡
u
∧
∀
x
∈
u
𝒫
x
∈
u
∧
∀
y
∈
u
x
y
∈
u
∧
∀
y
∈
u
x
⋃
ran
⁡
y
∈
u
↔
Tr
⁡
U
∧
∀
x
∈
U
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
∧
∀
y
∈
U
x
⋃
ran
⁡
y
∈
U
11
df-gru
⊢
Univ
=
u
|
Tr
⁡
u
∧
∀
x
∈
u
𝒫
x
∈
u
∧
∀
y
∈
u
x
y
∈
u
∧
∀
y
∈
u
x
⋃
ran
⁡
y
∈
u
12
10
11
elab2g
⊢
U
∈
V
→
U
∈
Univ
↔
Tr
⁡
U
∧
∀
x
∈
U
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
∧
∀
y
∈
U
x
⋃
ran
⁡
y
∈
U