Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Lagrange's four-square theorem
elgz
Next ⟩
gzcn
Metamath Proof Explorer
Ascii
Unicode
Theorem
elgz
Description:
Elementhood in the gaussian integers.
(Contributed by
Mario Carneiro
, 14-Jul-2014)
Ref
Expression
Assertion
elgz
⊢
A
∈
ℤ
i
↔
A
∈
ℂ
∧
ℜ
⁡
A
∈
ℤ
∧
ℑ
⁡
A
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
x
=
A
→
ℜ
⁡
x
=
ℜ
⁡
A
2
1
eleq1d
⊢
x
=
A
→
ℜ
⁡
x
∈
ℤ
↔
ℜ
⁡
A
∈
ℤ
3
fveq2
⊢
x
=
A
→
ℑ
⁡
x
=
ℑ
⁡
A
4
3
eleq1d
⊢
x
=
A
→
ℑ
⁡
x
∈
ℤ
↔
ℑ
⁡
A
∈
ℤ
5
2
4
anbi12d
⊢
x
=
A
→
ℜ
⁡
x
∈
ℤ
∧
ℑ
⁡
x
∈
ℤ
↔
ℜ
⁡
A
∈
ℤ
∧
ℑ
⁡
A
∈
ℤ
6
df-gz
⊢
ℤ
i
=
x
∈
ℂ
|
ℜ
⁡
x
∈
ℤ
∧
ℑ
⁡
x
∈
ℤ
7
5
6
elrab2
⊢
A
∈
ℤ
i
↔
A
∈
ℂ
∧
ℜ
⁡
A
∈
ℤ
∧
ℑ
⁡
A
∈
ℤ
8
3anass
⊢
A
∈
ℂ
∧
ℜ
⁡
A
∈
ℤ
∧
ℑ
⁡
A
∈
ℤ
↔
A
∈
ℂ
∧
ℜ
⁡
A
∈
ℤ
∧
ℑ
⁡
A
∈
ℤ
9
7
8
bitr4i
⊢
A
∈
ℤ
i
↔
A
∈
ℂ
∧
ℜ
⁡
A
∈
ℤ
∧
ℑ
⁡
A
∈
ℤ