Metamath Proof Explorer


Theorem elharval

Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl , this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion elharval Y har X Y On Y X

Proof

Step Hyp Ref Expression
1 elfvex Y har X X V
2 reldom Rel
3 2 brrelex2i Y X X V
4 3 adantl Y On Y X X V
5 harval X V har X = y On | y X
6 5 eleq2d X V Y har X Y y On | y X
7 breq1 y = Y y X Y X
8 7 elrab Y y On | y X Y On Y X
9 6 8 bitrdi X V Y har X Y On Y X
10 1 4 9 pm5.21nii Y har X Y On Y X