Metamath Proof Explorer


Theorem elhmop

Description: Property defining a Hermitian Hilbert space operator. (Contributed by NM, 18-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elhmop T HrmOp T : x y x ih T y = T x ih y

Proof

Step Hyp Ref Expression
1 fveq1 t = T t y = T y
2 1 oveq2d t = T x ih t y = x ih T y
3 fveq1 t = T t x = T x
4 3 oveq1d t = T t x ih y = T x ih y
5 2 4 eqeq12d t = T x ih t y = t x ih y x ih T y = T x ih y
6 5 2ralbidv t = T x y x ih t y = t x ih y x y x ih T y = T x ih y
7 df-hmop HrmOp = t | x y x ih t y = t x ih y
8 6 7 elrab2 T HrmOp T x y x ih T y = T x ih y
9 ax-hilex V
10 9 9 elmap T T :
11 10 anbi1i T x y x ih T y = T x ih y T : x y x ih T y = T x ih y
12 8 11 bitri T HrmOp T : x y x ih T y = T x ih y