Metamath Proof Explorer


Theorem elhomai

Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homarcl.h H=HomaC
homafval.b B=BaseC
homafval.c φCCat
homaval.j J=HomC
homaval.x φXB
homaval.y φYB
elhomai.f φFXJY
Assertion elhomai φXYXHYF

Proof

Step Hyp Ref Expression
1 homarcl.h H=HomaC
2 homafval.b B=BaseC
3 homafval.c φCCat
4 homaval.j J=HomC
5 homaval.x φXB
6 homaval.y φYB
7 elhomai.f φFXJY
8 eqidd φXY=XY
9 1 2 3 4 5 6 elhoma φXYXHYFXY=XYFXJY
10 8 7 9 mpbir2and φXYXHYF