Metamath Proof Explorer


Theorem elhomai2

Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homarcl.h H = Hom a C
homafval.b B = Base C
homafval.c φ C Cat
homaval.j J = Hom C
homaval.x φ X B
homaval.y φ Y B
elhomai.f φ F X J Y
Assertion elhomai2 φ X Y F X H Y

Proof

Step Hyp Ref Expression
1 homarcl.h H = Hom a C
2 homafval.b B = Base C
3 homafval.c φ C Cat
4 homaval.j J = Hom C
5 homaval.x φ X B
6 homaval.y φ Y B
7 elhomai.f φ F X J Y
8 df-ot X Y F = X Y F
9 1 2 3 4 5 6 7 elhomai φ X Y X H Y F
10 df-br X Y X H Y F X Y F X H Y
11 9 10 sylib φ X Y F X H Y
12 8 11 eqeltrid φ X Y F X H Y