Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007) (Revised by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elicc2 | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | |
|
| 2 | rexr | |
|
| 3 | elicc1 | |
|
| 4 | 1 2 3 | syl2an | |
| 5 | mnfxr | |
|
| 6 | 5 | a1i | |
| 7 | 1 | ad2antrr | |
| 8 | simpr1 | |
|
| 9 | mnflt | |
|
| 10 | 9 | ad2antrr | |
| 11 | simpr2 | |
|
| 12 | 6 7 8 10 11 | xrltletrd | |
| 13 | 2 | ad2antlr | |
| 14 | pnfxr | |
|
| 15 | 14 | a1i | |
| 16 | simpr3 | |
|
| 17 | ltpnf | |
|
| 18 | 17 | ad2antlr | |
| 19 | 8 13 15 16 18 | xrlelttrd | |
| 20 | xrrebnd | |
|
| 21 | 8 20 | syl | |
| 22 | 12 19 21 | mpbir2and | |
| 23 | 22 11 16 | 3jca | |
| 24 | 23 | ex | |
| 25 | rexr | |
|
| 26 | 25 | 3anim1i | |
| 27 | 24 26 | impbid1 | |
| 28 | 4 27 | bitrd | |