Metamath Proof Explorer


Theorem elicc4

Description: Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014) (Proof shortened by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion elicc4 A*B*C*CABACCB

Proof

Step Hyp Ref Expression
1 elicc1 A*B*CABC*ACCB
2 3anass C*ACCBC*ACCB
3 1 2 bitrdi A*B*CABC*ACCB
4 3 baibd A*B*C*CABACCB
5 4 3impa A*B*C*CABACCB