Metamath Proof Explorer


Theorem elicc4

Description: Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014) (Proof shortened by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion elicc4 A * B * C * C A B A C C B

Proof

Step Hyp Ref Expression
1 elicc1 A * B * C A B C * A C C B
2 3anass C * A C C B C * A C C B
3 1 2 bitrdi A * B * C A B C * A C C B
4 3 baibd A * B * C * C A B A C C B
5 4 3impa A * B * C * C A B A C C B