Metamath Proof Explorer


Theorem elicc4abs

Description: Membership in a symmetric closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion elicc4abs A B C C A B A + B C A B

Proof

Step Hyp Ref Expression
1 resubcl A B A B
2 1 3adant3 A B C A B
3 2 rexrd A B C A B *
4 readdcl A B A + B
5 4 3adant3 A B C A + B
6 5 rexrd A B C A + B *
7 rexr C C *
8 7 3ad2ant3 A B C C *
9 elicc4 A B * A + B * C * C A B A + B A B C C A + B
10 3 6 8 9 syl3anc A B C C A B A + B A B C C A + B
11 absdifle C A B C A B A B C C A + B
12 11 3coml A B C C A B A B C C A + B
13 10 12 bitr4d A B C C A B A + B C A B