Metamath Proof Explorer
Description: Membership in a closed real interval. (Contributed by Glauco
Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
eliccd.1 |
|
|
|
eliccd.2 |
|
|
|
eliccd.3 |
|
|
|
eliccd.4 |
|
|
|
eliccd.5 |
|
|
Assertion |
eliccd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eliccd.1 |
|
2 |
|
eliccd.2 |
|
3 |
|
eliccd.3 |
|
4 |
|
eliccd.4 |
|
5 |
|
eliccd.5 |
|
6 |
|
elicc2 |
|
7 |
1 2 6
|
syl2anc |
|
8 |
3 4 5 7
|
mpbir3and |
|