Metamath Proof Explorer


Theorem eliccd

Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliccd.1 φ A
eliccd.2 φ B
eliccd.3 φ C
eliccd.4 φ A C
eliccd.5 φ C B
Assertion eliccd φ C A B

Proof

Step Hyp Ref Expression
1 eliccd.1 φ A
2 eliccd.2 φ B
3 eliccd.3 φ C
4 eliccd.4 φ A C
5 eliccd.5 φ C B
6 elicc2 A B C A B C A C C B
7 1 2 6 syl2anc φ C A B C A C C B
8 3 4 5 7 mpbir3and φ C A B