Metamath Proof Explorer


Theorem eliccelioc

Description: Membership in a closed interval and in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliccelioc.a φ A
eliccelioc.b φ B
eliccelioc.c φ C *
Assertion eliccelioc φ C A B C A B C A

Proof

Step Hyp Ref Expression
1 eliccelioc.a φ A
2 eliccelioc.b φ B
3 eliccelioc.c φ C *
4 iocssicc A B A B
5 4 sseli C A B C A B
6 5 adantl φ C A B C A B
7 1 adantr φ C A B A
8 1 rexrd φ A *
9 8 adantr φ C A B A *
10 2 adantr φ C A B B
11 10 rexrd φ C A B B *
12 simpr φ C A B C A B
13 iocgtlb A * B * C A B A < C
14 9 11 12 13 syl3anc φ C A B A < C
15 7 14 gtned φ C A B C A
16 6 15 jca φ C A B C A B C A
17 8 adantr φ C A B C A A *
18 2 rexrd φ B *
19 18 adantr φ C A B C A B *
20 3 adantr φ C A B C A C *
21 1 adantr φ C A B C A A
22 1 2 iccssred φ A B
23 22 sselda φ C A B C
24 23 adantrr φ C A B C A C
25 8 adantr φ C A B A *
26 18 adantr φ C A B B *
27 simpr φ C A B C A B
28 iccgelb A * B * C A B A C
29 25 26 27 28 syl3anc φ C A B A C
30 29 adantrr φ C A B C A A C
31 simprr φ C A B C A C A
32 21 24 30 31 leneltd φ C A B C A A < C
33 iccleub A * B * C A B C B
34 25 26 27 33 syl3anc φ C A B C B
35 34 adantrr φ C A B C A C B
36 17 19 20 32 35 eliocd φ C A B C A C A B
37 16 36 impbida φ C A B C A B C A