Metamath Proof Explorer


Theorem eliccxrd

Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliccxrd.1 φ A *
eliccxrd.2 φ B *
eliccxrd.3 φ C *
eliccxrd.4 φ A C
eliccxrd.5 φ C B
Assertion eliccxrd φ C A B

Proof

Step Hyp Ref Expression
1 eliccxrd.1 φ A *
2 eliccxrd.2 φ B *
3 eliccxrd.3 φ C *
4 eliccxrd.4 φ A C
5 eliccxrd.5 φ C B
6 4 5 jca φ A C C B
7 elicc4 A * B * C * C A B A C C B
8 1 2 3 7 syl3anc φ C A B A C C B
9 6 8 mpbird φ C A B