Metamath Proof Explorer


Theorem elicod

Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses elicod.a φ A *
elicod.b φ B *
elicod.3 φ C *
elicod.4 φ A C
elicod.5 φ C < B
Assertion elicod φ C A B

Proof

Step Hyp Ref Expression
1 elicod.a φ A *
2 elicod.b φ B *
3 elicod.3 φ C *
4 elicod.4 φ A C
5 elicod.5 φ C < B
6 elico1 A * B * C A B C * A C C < B
7 1 2 6 syl2anc φ C A B C * A C C < B
8 3 4 5 7 mpbir3and φ C A B