Metamath Proof Explorer


Theorem elidinxp

Description: Characterization of the elements of the intersection of the identity relation with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022)

Ref Expression
Assertion elidinxp C I A × B x A B C = x x

Proof

Step Hyp Ref Expression
1 risset x B y B y = x
2 1 anbi2ci x B C = x x C = x x y B y = x
3 r19.42v y B C = x x y = x C = x x y B y = x
4 opeq2 x = y x x = x y
5 4 equcoms y = x x x = x y
6 5 eqeq2d y = x C = x x C = x y
7 6 pm5.32ri C = x x y = x C = x y y = x
8 vex y V
9 8 ideq x I y x = y
10 df-br x I y x y I
11 equcom x = y y = x
12 9 10 11 3bitr3i x y I y = x
13 12 anbi2i C = x y x y I C = x y y = x
14 7 13 bitr4i C = x x y = x C = x y x y I
15 14 rexbii y B C = x x y = x y B C = x y x y I
16 2 3 15 3bitr2i x B C = x x y B C = x y x y I
17 16 rexbii x A x B C = x x x A y B C = x y x y I
18 rexin x A B C = x x x A x B C = x x
19 elinxp C I A × B x A y B C = x y x y I
20 17 18 19 3bitr4ri C I A × B x A B C = x x