Metamath Proof Explorer


Theorem elii1

Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014)

Ref Expression
Assertion elii1 X 0 1 2 X 0 1 X 1 2

Proof

Step Hyp Ref Expression
1 0re 0
2 halfre 1 2
3 1 2 elicc2i X 0 1 2 X 0 X X 1 2
4 3 simp1bi X 0 1 2 X
5 2 a1i X 0 1 2 1 2
6 1re 1
7 6 a1i X 0 1 2 1
8 3 simp3bi X 0 1 2 X 1 2
9 halflt1 1 2 < 1
10 2 6 9 ltleii 1 2 1
11 10 a1i X 0 1 2 1 2 1
12 4 5 7 8 11 letrd X 0 1 2 X 1
13 12 pm4.71ri X 0 1 2 X 1 X 0 1 2
14 ancom X 1 X 0 1 2 X 0 1 2 X 1
15 an32 X 0 X X 1 2 X 1 X 0 X X 1 X 1 2
16 df-3an X 0 X X 1 2 X 0 X X 1 2
17 3 16 bitri X 0 1 2 X 0 X X 1 2
18 17 anbi1i X 0 1 2 X 1 X 0 X X 1 2 X 1
19 1 6 elicc2i X 0 1 X 0 X X 1
20 df-3an X 0 X X 1 X 0 X X 1
21 19 20 bitri X 0 1 X 0 X X 1
22 21 anbi1i X 0 1 X 1 2 X 0 X X 1 X 1 2
23 15 18 22 3bitr4i X 0 1 2 X 1 X 0 1 X 1 2
24 14 23 bitri X 1 X 0 1 2 X 0 1 X 1 2
25 13 24 bitri X 0 1 2 X 0 1 X 1 2