Metamath Proof Explorer


Theorem elii2

Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014)

Ref Expression
Assertion elii2 X 0 1 ¬ X 1 2 X 1 2 1

Proof

Step Hyp Ref Expression
1 elicc01 X 0 1 X 0 X X 1
2 1 simp1bi X 0 1 X
3 2 adantr X 0 1 ¬ X 1 2 X
4 halfre 1 2
5 letric X 1 2 X 1 2 1 2 X
6 2 4 5 sylancl X 0 1 X 1 2 1 2 X
7 6 orcanai X 0 1 ¬ X 1 2 1 2 X
8 1 simp3bi X 0 1 X 1
9 8 adantr X 0 1 ¬ X 1 2 X 1
10 1re 1
11 4 10 elicc2i X 1 2 1 X 1 2 X X 1
12 3 7 9 11 syl3anbrc X 0 1 ¬ X 1 2 X 1 2 1