Database
BASIC TOPOLOGY
Metric spaces
Topological definitions using the reals
elii2
Next ⟩
iimulcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
elii2
Description:
Divide the unit interval into two pieces.
(Contributed by
Mario Carneiro
, 7-Jun-2014)
Ref
Expression
Assertion
elii2
⊢
X
∈
0
1
∧
¬
X
≤
1
2
→
X
∈
1
2
1
Proof
Step
Hyp
Ref
Expression
1
elicc01
⊢
X
∈
0
1
↔
X
∈
ℝ
∧
0
≤
X
∧
X
≤
1
2
1
simp1bi
⊢
X
∈
0
1
→
X
∈
ℝ
3
2
adantr
⊢
X
∈
0
1
∧
¬
X
≤
1
2
→
X
∈
ℝ
4
halfre
⊢
1
2
∈
ℝ
5
letric
⊢
X
∈
ℝ
∧
1
2
∈
ℝ
→
X
≤
1
2
∨
1
2
≤
X
6
2
4
5
sylancl
⊢
X
∈
0
1
→
X
≤
1
2
∨
1
2
≤
X
7
6
orcanai
⊢
X
∈
0
1
∧
¬
X
≤
1
2
→
1
2
≤
X
8
1
simp3bi
⊢
X
∈
0
1
→
X
≤
1
9
8
adantr
⊢
X
∈
0
1
∧
¬
X
≤
1
2
→
X
≤
1
10
1re
⊢
1
∈
ℝ
11
4
10
elicc2i
⊢
X
∈
1
2
1
↔
X
∈
ℝ
∧
1
2
≤
X
∧
X
≤
1
12
3
7
9
11
syl3anbrc
⊢
X
∈
0
1
∧
¬
X
≤
1
2
→
X
∈
1
2
1