Metamath Proof Explorer


Theorem eliin

Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003)

Ref Expression
Assertion eliin A V A x B C x B A C

Proof

Step Hyp Ref Expression
1 eleq1 y = A y C A C
2 1 ralbidv y = A x B y C x B A C
3 df-iin x B C = y | x B y C
4 2 3 elab2g A V A x B C x B A C