Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
eliin
Next ⟩
eliuni
Metamath Proof Explorer
Ascii
Unicode
Theorem
eliin
Description:
Membership in indexed intersection.
(Contributed by
NM
, 3-Sep-2003)
Ref
Expression
Assertion
eliin
⊢
A
∈
V
→
A
∈
⋂
x
∈
B
C
↔
∀
x
∈
B
A
∈
C
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
y
=
A
→
y
∈
C
↔
A
∈
C
2
1
ralbidv
⊢
y
=
A
→
∀
x
∈
B
y
∈
C
↔
∀
x
∈
B
A
∈
C
3
df-iin
⊢
⋂
x
∈
B
C
=
y
|
∀
x
∈
B
y
∈
C
4
2
3
elab2g
⊢
A
∈
V
→
A
∈
⋂
x
∈
B
C
↔
∀
x
∈
B
A
∈
C