Metamath Proof Explorer


Theorem eliin2f

Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis eliin2f.1 _xB
Assertion eliin2f BAxBCxBAC

Proof

Step Hyp Ref Expression
1 eliin2f.1 _xB
2 eliin AVAxBCxBAC
3 2 adantl BAVAxBCxBAC
4 prcnel ¬AV¬AxBC
5 4 adantl B¬AV¬AxBC
6 n0 ByyB
7 6 biimpi ByyB
8 7 adantr B¬AVyyB
9 prcnel ¬AV¬Ay/xC
10 9 a1d ¬AVyB¬Ay/xC
11 10 adantl B¬AVyB¬Ay/xC
12 11 ancld B¬AVyByB¬Ay/xC
13 12 eximdv B¬AVyyByyB¬Ay/xC
14 8 13 mpd B¬AVyyB¬Ay/xC
15 df-rex yB¬Ay/xCyyB¬Ay/xC
16 14 15 sylibr B¬AVyB¬Ay/xC
17 nfcv _yB
18 nfv y¬AC
19 nfcsb1v _xy/xC
20 19 nfel2 xAy/xC
21 20 nfn x¬Ay/xC
22 csbeq1a x=yC=y/xC
23 22 eleq2d x=yACAy/xC
24 23 notbid x=y¬AC¬Ay/xC
25 1 17 18 21 24 cbvrexfw xB¬ACyB¬Ay/xC
26 16 25 sylibr B¬AVxB¬AC
27 rexnal xB¬AC¬xBAC
28 26 27 sylib B¬AV¬xBAC
29 5 28 2falsed B¬AVAxBCxBAC
30 3 29 pm2.61dan BAxBCxBAC