Metamath Proof Explorer


Theorem eliind

Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses eliind.a φ A x B C
eliind.k φ K B
eliind.d x = K A C A D
Assertion eliind φ A D

Proof

Step Hyp Ref Expression
1 eliind.a φ A x B C
2 eliind.k φ K B
3 eliind.d x = K A C A D
4 eliin A x B C A x B C x B A C
5 1 4 syl φ A x B C x B A C
6 1 5 mpbid φ x B A C
7 3 6 2 rspcdva φ A D