Metamath Proof Explorer


Theorem eliind2

Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses eliind2.1 x φ
eliind2.2 φ A V
eliind2.3 φ x B A C
Assertion eliind2 φ A x B C

Proof

Step Hyp Ref Expression
1 eliind2.1 x φ
2 eliind2.2 φ A V
3 eliind2.3 φ x B A C
4 3 ex φ x B A C
5 1 4 ralrimi φ x B A C
6 eliin A V A x B C x B A C
7 2 6 syl φ A x B C x B A C
8 5 7 mpbird φ A x B C