Metamath Proof Explorer


Theorem eliinid

Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion eliinid A x B C x B A C

Proof

Step Hyp Ref Expression
1 simpl A x B C x B A x B C
2 eliin A x B C A x B C x B A C
3 2 adantr A x B C x B A x B C x B A C
4 1 3 mpbid A x B C x B x B A C
5 rspa x B A C x B A C
6 4 5 sylancom A x B C x B A C