Metamath Proof Explorer


Theorem elim2if

Description: Elimination of two conditional operators contained in a wff ch . (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses elim2if.1 if φ A if ψ B C = A χ θ
elim2if.2 if φ A if ψ B C = B χ τ
elim2if.3 if φ A if ψ B C = C χ η
Assertion elim2if χ φ θ ¬ φ ψ τ ¬ ψ η

Proof

Step Hyp Ref Expression
1 elim2if.1 if φ A if ψ B C = A χ θ
2 elim2if.2 if φ A if ψ B C = B χ τ
3 elim2if.3 if φ A if ψ B C = C χ η
4 iftrue φ if φ A if ψ B C = A
5 4 1 syl φ χ θ
6 iffalse ¬ φ if φ A if ψ B C = if ψ B C
7 6 eqeq1d ¬ φ if φ A if ψ B C = B if ψ B C = B
8 7 2 syl6bir ¬ φ if ψ B C = B χ τ
9 6 eqeq1d ¬ φ if φ A if ψ B C = C if ψ B C = C
10 9 3 syl6bir ¬ φ if ψ B C = C χ η
11 8 10 elimifd ¬ φ χ ψ τ ¬ ψ η
12 5 11 cases χ φ θ ¬ φ ψ τ ¬ ψ η