Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Relations and Functions
Functions - misc additions
elimampt
Next ⟩
suppss2f
Metamath Proof Explorer
Ascii
Unicode
Theorem
elimampt
Description:
Membership in the image of a mapping.
(Contributed by
Thierry Arnoux
, 3-Jan-2022)
Ref
Expression
Hypotheses
elimampt.f
⊢
F
=
x
∈
A
⟼
B
elimampt.c
⊢
φ
→
C
∈
W
elimampt.d
⊢
φ
→
D
⊆
A
Assertion
elimampt
⊢
φ
→
C
∈
F
D
↔
∃
x
∈
D
C
=
B
Proof
Step
Hyp
Ref
Expression
1
elimampt.f
⊢
F
=
x
∈
A
⟼
B
2
elimampt.c
⊢
φ
→
C
∈
W
3
elimampt.d
⊢
φ
→
D
⊆
A
4
df-ima
⊢
F
D
=
ran
⁡
F
↾
D
5
4
eleq2i
⊢
C
∈
F
D
↔
C
∈
ran
⁡
F
↾
D
6
1
reseq1i
⊢
F
↾
D
=
x
∈
A
⟼
B
↾
D
7
resmpt
⊢
D
⊆
A
→
x
∈
A
⟼
B
↾
D
=
x
∈
D
⟼
B
8
6
7
syl5eq
⊢
D
⊆
A
→
F
↾
D
=
x
∈
D
⟼
B
9
8
rneqd
⊢
D
⊆
A
→
ran
⁡
F
↾
D
=
ran
⁡
x
∈
D
⟼
B
10
9
eleq2d
⊢
D
⊆
A
→
C
∈
ran
⁡
F
↾
D
↔
C
∈
ran
⁡
x
∈
D
⟼
B
11
3
10
syl
⊢
φ
→
C
∈
ran
⁡
F
↾
D
↔
C
∈
ran
⁡
x
∈
D
⟼
B
12
eqid
⊢
x
∈
D
⟼
B
=
x
∈
D
⟼
B
13
12
elrnmpt
⊢
C
∈
W
→
C
∈
ran
⁡
x
∈
D
⟼
B
↔
∃
x
∈
D
C
=
B
14
2
13
syl
⊢
φ
→
C
∈
ran
⁡
x
∈
D
⟼
B
↔
∃
x
∈
D
C
=
B
15
11
14
bitrd
⊢
φ
→
C
∈
ran
⁡
F
↾
D
↔
∃
x
∈
D
C
=
B
16
5
15
syl5bb
⊢
φ
→
C
∈
F
D
↔
∃
x
∈
D
C
=
B