Metamath Proof Explorer


Theorem eliman0

Description: A nonempty function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019)

Ref Expression
Assertion eliman0 A B ¬ F A = F A F B

Proof

Step Hyp Ref Expression
1 fvbr0 A F F A F A =
2 orcom A F F A F A = F A = A F F A
3 1 2 mpbi F A = A F F A
4 3 ori ¬ F A = A F F A
5 breq1 x = A x F F A A F F A
6 5 rspcev A B A F F A x B x F F A
7 4 6 sylan2 A B ¬ F A = x B x F F A
8 fvex F A V
9 8 elima F A F B x B x F F A
10 7 9 sylibr A B ¬ F A = F A F B