Metamath Proof Explorer


Theorem elimasn1

Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) Use df-br and shorten. (Revised by BJ, 16-Oct-2024)

Ref Expression
Hypotheses elimasn1.1 B V
elimasn1.2 C V
Assertion elimasn1 C A B B A C

Proof

Step Hyp Ref Expression
1 elimasn1.1 B V
2 elimasn1.2 C V
3 elimasng1 B V C V C A B B A C
4 1 2 3 mp2an C A B B A C