Metamath Proof Explorer


Theorem elimasng

Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006) TODO: replace existing usages by usages of elimasng1 , remove, and relabel elimasng1 to "elimasng".

Ref Expression
Assertion elimasng B V C W C A B B C A

Proof

Step Hyp Ref Expression
1 elimasng1 B V C W C A B B A C
2 df-br B A C B C A
3 1 2 bitrdi B V C W C A B B C A