Metamath Proof Explorer


Theorem elimasni

Description: Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010)

Ref Expression
Assertion elimasni C A B B A C

Proof

Step Hyp Ref Expression
1 noel ¬ C
2 snprc ¬ B V B =
3 2 biimpi ¬ B V B =
4 3 imaeq2d ¬ B V A B = A
5 ima0 A =
6 4 5 eqtrdi ¬ B V A B =
7 6 eleq2d ¬ B V C A B C
8 1 7 mtbiri ¬ B V ¬ C A B
9 8 con4i C A B B V
10 elex C A B C V
11 9 10 jca C A B B V C V
12 elimasng1 B V C V C A B B A C
13 12 biimpd B V C V C A B B A C
14 11 13 mpcom C A B B A C