Description: Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elimdelov.1 | |
|
elimdelov.2 | |
||
Assertion | elimdelov | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimdelov.1 | |
|
2 | elimdelov.2 | |
|
3 | iftrue | |
|
4 | iftrue | |
|
5 | iftrue | |
|
6 | 4 5 | oveq12d | |
7 | 1 3 6 | 3eltr4d | |
8 | iffalse | |
|
9 | 8 2 | eqeltrdi | |
10 | iffalse | |
|
11 | iffalse | |
|
12 | 10 11 | oveq12d | |
13 | 9 12 | eleqtrrd | |
14 | 7 13 | pm2.61i | |