Metamath Proof Explorer


Theorem elimdelov

Description: Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008)

Ref Expression
Hypotheses elimdelov.1 φCAFB
elimdelov.2 ZXFY
Assertion elimdelov ifφCZifφAXFifφBY

Proof

Step Hyp Ref Expression
1 elimdelov.1 φCAFB
2 elimdelov.2 ZXFY
3 iftrue φifφCZ=C
4 iftrue φifφAX=A
5 iftrue φifφBY=B
6 4 5 oveq12d φifφAXFifφBY=AFB
7 1 3 6 3eltr4d φifφCZifφAXFifφBY
8 iffalse ¬φifφCZ=Z
9 8 2 eqeltrdi ¬φifφCZXFY
10 iffalse ¬φifφAX=X
11 iffalse ¬φifφBY=Y
12 10 11 oveq12d ¬φifφAXFifφBY=XFY
13 9 12 eleqtrrd ¬φifφCZifφAXFifφBY
14 7 13 pm2.61i ifφCZifφAXFifφBY