Metamath Proof Explorer


Theorem elimdhyp

Description: Version of elimhyp where the hypothesis is deduced from the final antecedent. See divalg for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008)

Ref Expression
Hypotheses elimdhyp.1 φ ψ
elimdhyp.2 A = if φ A B ψ χ
elimdhyp.3 B = if φ A B θ χ
elimdhyp.4 θ
Assertion elimdhyp χ

Proof

Step Hyp Ref Expression
1 elimdhyp.1 φ ψ
2 elimdhyp.2 A = if φ A B ψ χ
3 elimdhyp.3 B = if φ A B θ χ
4 elimdhyp.4 θ
5 iftrue φ if φ A B = A
6 5 eqcomd φ A = if φ A B
7 6 2 syl φ ψ χ
8 1 7 mpbid φ χ
9 iffalse ¬ φ if φ A B = B
10 9 eqcomd ¬ φ B = if φ A B
11 10 3 syl ¬ φ θ χ
12 4 11 mpbii ¬ φ χ
13 8 12 pm2.61i χ