Metamath Proof Explorer


Theorem elimel

Description: Eliminate a membership hypothesis for weak deduction theorem, when special case B e. C is provable. (Contributed by NM, 15-May-1999)

Ref Expression
Hypothesis elimel.1 B C
Assertion elimel if A C A B C

Proof

Step Hyp Ref Expression
1 elimel.1 B C
2 eleq1 A = if A C A B A C if A C A B C
3 eleq1 B = if A C A B B C if A C A B C
4 2 3 1 elimhyp if A C A B C