Metamath Proof Explorer


Theorem elimf

Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth , when a special case G : A --> B is provable, in order to convert F : A --> B from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006)

Ref Expression
Hypothesis elimf.1 G : A B
Assertion elimf if F : A B F G : A B

Proof

Step Hyp Ref Expression
1 elimf.1 G : A B
2 feq1 F = if F : A B F G F : A B if F : A B F G : A B
3 feq1 G = if F : A B F G G : A B if F : A B F G : A B
4 2 3 1 elimhyp if F : A B F G : A B