Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The weak deduction theorem for set theory
elimhyp
Metamath Proof Explorer
Description: Eliminate a hypothesis containing class variable A when it is known
for a specific class B . For more information, see comments in
dedth . (Contributed by NM , 15-May-1999)
Ref
Expression
Hypotheses
elimhyp.1
⊢ A = if φ A B → φ ↔ ψ
elimhyp.2
⊢ B = if φ A B → χ ↔ ψ
elimhyp.3
⊢ χ
Assertion
elimhyp
⊢ ψ
Proof
Step
Hyp
Ref
Expression
1
elimhyp.1
⊢ A = if φ A B → φ ↔ ψ
2
elimhyp.2
⊢ B = if φ A B → χ ↔ ψ
3
elimhyp.3
⊢ χ
4
iftrue
⊢ φ → if φ A B = A
5
4
eqcomd
⊢ φ → A = if φ A B
6
5 1
syl
⊢ φ → φ ↔ ψ
7
6
ibi
⊢ φ → ψ
8
iffalse
⊢ ¬ φ → if φ A B = B
9
8
eqcomd
⊢ ¬ φ → B = if φ A B
10
9 2
syl
⊢ ¬ φ → χ ↔ ψ
11
3 10
mpbii
⊢ ¬ φ → ψ
12
7 11
pm2.61i
⊢ ψ