Metamath Proof Explorer


Theorem elimhyp

Description: Eliminate a hypothesis containing class variable A when it is known for a specific class B . For more information, see comments in dedth . (Contributed by NM, 15-May-1999)

Ref Expression
Hypotheses elimhyp.1 A = if φ A B φ ψ
elimhyp.2 B = if φ A B χ ψ
elimhyp.3 χ
Assertion elimhyp ψ

Proof

Step Hyp Ref Expression
1 elimhyp.1 A = if φ A B φ ψ
2 elimhyp.2 B = if φ A B χ ψ
3 elimhyp.3 χ
4 iftrue φ if φ A B = A
5 4 eqcomd φ A = if φ A B
6 5 1 syl φ φ ψ
7 6 ibi φ ψ
8 iffalse ¬ φ if φ A B = B
9 8 eqcomd ¬ φ B = if φ A B
10 9 2 syl ¬ φ χ ψ
11 3 10 mpbii ¬ φ ψ
12 7 11 pm2.61i ψ