Metamath Proof Explorer


Theorem elimhyp2v

Description: Eliminate a hypothesis containing 2 class variables. (Contributed by NM, 14-Aug-1999)

Ref Expression
Hypotheses elimhyp2v.1 A = if φ A C φ χ
elimhyp2v.2 B = if φ B D χ θ
elimhyp2v.3 C = if φ A C τ η
elimhyp2v.4 D = if φ B D η θ
elimhyp2v.5 τ
Assertion elimhyp2v θ

Proof

Step Hyp Ref Expression
1 elimhyp2v.1 A = if φ A C φ χ
2 elimhyp2v.2 B = if φ B D χ θ
3 elimhyp2v.3 C = if φ A C τ η
4 elimhyp2v.4 D = if φ B D η θ
5 elimhyp2v.5 τ
6 iftrue φ if φ A C = A
7 6 eqcomd φ A = if φ A C
8 7 1 syl φ φ χ
9 iftrue φ if φ B D = B
10 9 eqcomd φ B = if φ B D
11 10 2 syl φ χ θ
12 8 11 bitrd φ φ θ
13 12 ibi φ θ
14 iffalse ¬ φ if φ A C = C
15 14 eqcomd ¬ φ C = if φ A C
16 15 3 syl ¬ φ τ η
17 iffalse ¬ φ if φ B D = D
18 17 eqcomd ¬ φ D = if φ B D
19 18 4 syl ¬ φ η θ
20 16 19 bitrd ¬ φ τ θ
21 5 20 mpbii ¬ φ θ
22 13 21 pm2.61i θ