Metamath Proof Explorer


Theorem elimhyp3v

Description: Eliminate a hypothesis containing 3 class variables. (Contributed by NM, 14-Aug-1999)

Ref Expression
Hypotheses elimhyp3v.1 A = if φ A D φ χ
elimhyp3v.2 B = if φ B R χ θ
elimhyp3v.3 C = if φ C S θ τ
elimhyp3v.4 D = if φ A D η ζ
elimhyp3v.5 R = if φ B R ζ σ
elimhyp3v.6 S = if φ C S σ τ
elimhyp3v.7 η
Assertion elimhyp3v τ

Proof

Step Hyp Ref Expression
1 elimhyp3v.1 A = if φ A D φ χ
2 elimhyp3v.2 B = if φ B R χ θ
3 elimhyp3v.3 C = if φ C S θ τ
4 elimhyp3v.4 D = if φ A D η ζ
5 elimhyp3v.5 R = if φ B R ζ σ
6 elimhyp3v.6 S = if φ C S σ τ
7 elimhyp3v.7 η
8 iftrue φ if φ A D = A
9 8 eqcomd φ A = if φ A D
10 9 1 syl φ φ χ
11 iftrue φ if φ B R = B
12 11 eqcomd φ B = if φ B R
13 12 2 syl φ χ θ
14 iftrue φ if φ C S = C
15 14 eqcomd φ C = if φ C S
16 15 3 syl φ θ τ
17 10 13 16 3bitrd φ φ τ
18 17 ibi φ τ
19 iffalse ¬ φ if φ A D = D
20 19 eqcomd ¬ φ D = if φ A D
21 20 4 syl ¬ φ η ζ
22 iffalse ¬ φ if φ B R = R
23 22 eqcomd ¬ φ R = if φ B R
24 23 5 syl ¬ φ ζ σ
25 iffalse ¬ φ if φ C S = S
26 25 eqcomd ¬ φ S = if φ C S
27 26 6 syl ¬ φ σ τ
28 21 24 27 3bitrd ¬ φ η τ
29 7 28 mpbii ¬ φ τ
30 18 29 pm2.61i τ