Metamath Proof Explorer


Theorem elimhyp4v

Description: Eliminate a hypothesis containing 4 class variables (for use with the weak deduction theorem dedth ). (Contributed by NM, 16-Apr-2005)

Ref Expression
Hypotheses elimhyp4v.1 A = if φ A D φ χ
elimhyp4v.2 B = if φ B R χ θ
elimhyp4v.3 C = if φ C S θ τ
elimhyp4v.4 F = if φ F G τ ψ
elimhyp4v.5 D = if φ A D η ζ
elimhyp4v.6 R = if φ B R ζ σ
elimhyp4v.7 S = if φ C S σ ρ
elimhyp4v.8 G = if φ F G ρ ψ
elimhyp4v.9 η
Assertion elimhyp4v ψ

Proof

Step Hyp Ref Expression
1 elimhyp4v.1 A = if φ A D φ χ
2 elimhyp4v.2 B = if φ B R χ θ
3 elimhyp4v.3 C = if φ C S θ τ
4 elimhyp4v.4 F = if φ F G τ ψ
5 elimhyp4v.5 D = if φ A D η ζ
6 elimhyp4v.6 R = if φ B R ζ σ
7 elimhyp4v.7 S = if φ C S σ ρ
8 elimhyp4v.8 G = if φ F G ρ ψ
9 elimhyp4v.9 η
10 iftrue φ if φ A D = A
11 10 eqcomd φ A = if φ A D
12 11 1 syl φ φ χ
13 iftrue φ if φ B R = B
14 13 eqcomd φ B = if φ B R
15 14 2 syl φ χ θ
16 12 15 bitrd φ φ θ
17 iftrue φ if φ C S = C
18 17 eqcomd φ C = if φ C S
19 18 3 syl φ θ τ
20 iftrue φ if φ F G = F
21 20 eqcomd φ F = if φ F G
22 21 4 syl φ τ ψ
23 16 19 22 3bitrd φ φ ψ
24 23 ibi φ ψ
25 iffalse ¬ φ if φ A D = D
26 25 eqcomd ¬ φ D = if φ A D
27 26 5 syl ¬ φ η ζ
28 iffalse ¬ φ if φ B R = R
29 28 eqcomd ¬ φ R = if φ B R
30 29 6 syl ¬ φ ζ σ
31 27 30 bitrd ¬ φ η σ
32 iffalse ¬ φ if φ C S = S
33 32 eqcomd ¬ φ S = if φ C S
34 33 7 syl ¬ φ σ ρ
35 iffalse ¬ φ if φ F G = G
36 35 eqcomd ¬ φ G = if φ F G
37 36 8 syl ¬ φ ρ ψ
38 31 34 37 3bitrd ¬ φ η ψ
39 9 38 mpbii ¬ φ ψ
40 24 39 pm2.61i ψ