Metamath Proof Explorer


Theorem elimif

Description: Elimination of a conditional operator contained in a wff ps . (Contributed by NM, 15-Feb-2005) (Proof shortened by NM, 25-Apr-2019)

Ref Expression
Hypotheses elimif.1 if φ A B = A ψ χ
elimif.2 if φ A B = B ψ θ
Assertion elimif ψ φ χ ¬ φ θ

Proof

Step Hyp Ref Expression
1 elimif.1 if φ A B = A ψ χ
2 elimif.2 if φ A B = B ψ θ
3 iftrue φ if φ A B = A
4 3 1 syl φ ψ χ
5 iffalse ¬ φ if φ A B = B
6 5 2 syl ¬ φ ψ θ
7 4 6 cases ψ φ χ ¬ φ θ