Metamath Proof Explorer


Theorem elimifd

Description: Elimination of a conditional operator contained in a wff ch . (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses elimifd.1 φ if ψ A B = A χ θ
elimifd.2 φ if ψ A B = B χ τ
Assertion elimifd φ χ ψ θ ¬ ψ τ

Proof

Step Hyp Ref Expression
1 elimifd.1 φ if ψ A B = A χ θ
2 elimifd.2 φ if ψ A B = B χ τ
3 exmid ψ ¬ ψ
4 3 biantrur χ ψ ¬ ψ χ
5 4 a1i φ χ ψ ¬ ψ χ
6 andir ψ ¬ ψ χ ψ χ ¬ ψ χ
7 6 a1i φ ψ ¬ ψ χ ψ χ ¬ ψ χ
8 iftrue ψ if ψ A B = A
9 8 1 syl5 φ ψ χ θ
10 9 pm5.32d φ ψ χ ψ θ
11 iffalse ¬ ψ if ψ A B = B
12 11 2 syl5 φ ¬ ψ χ τ
13 12 pm5.32d φ ¬ ψ χ ¬ ψ τ
14 10 13 orbi12d φ ψ χ ¬ ψ χ ψ θ ¬ ψ τ
15 5 7 14 3bitrd φ χ ψ θ ¬ ψ τ