Metamath Proof Explorer


Theorem elimne0

Description: Hypothesis for weak deduction theorem to eliminate A =/= 0 . (Contributed by NM, 15-May-1999)

Ref Expression
Assertion elimne0 if A 0 A 1 0

Proof

Step Hyp Ref Expression
1 neeq1 A = if A 0 A 1 A 0 if A 0 A 1 0
2 neeq1 1 = if A 0 A 1 1 0 if A 0 A 1 0
3 ax-1ne0 1 0
4 1 2 3 elimhyp if A 0 A 1 0