Metamath Proof Explorer


Theorem elimnv

Description: Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007) (New usage is discouraged.)

Ref Expression
Hypotheses elimnv.1 X = BaseSet U
elimnv.5 Z = 0 vec U
elimnv.9 U NrmCVec
Assertion elimnv if A X A Z X

Proof

Step Hyp Ref Expression
1 elimnv.1 X = BaseSet U
2 elimnv.5 Z = 0 vec U
3 elimnv.9 U NrmCVec
4 1 2 nvzcl U NrmCVec Z X
5 3 4 ax-mp Z X
6 5 elimel if A X A Z X